圆数学日记

时间:2023-07-31 16:08:01 阅读: 最新文章 文档下载

  我们学数学的时候,总会接触到圆的知识,下面提供圆数学日记,以供赏析和参考借鉴!

圆数学日记1

  我们刚刚学习了圆的认识(一)、(二),知道了圆的许多知识,并且由圆的认识了解到了圆周长的应用,能联系生活实际解决问题,我们去了解一下圆周长的知识!

  刚开始学圆的周长时,知道了能用滚动法和绕线法来量出圆的周长,探究出了圆的周长总是直径3倍多一些,实际上,圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时,通常取3.14。

  我们就得出一个公式:如果用C表示的周长,那么C=πd或C=2πr也就是圆的周长=圆周率×直径。圆的周长有3个应用:1.已知d求C=πd 2.已知r求C,先求d再求C 3.已知C求d d=C÷π 已知C求r 先求d 再求r。

  已知d求C:一个圆的直径是5.5分米, 求这个圆的周长,那就用π3.14×直径5.5=17.27dm.

  已知r求C:汽车车轮的半径为0.3米,它滚动1圈前进多少米?滚动1000圈前进多少米?它滚动一圈前进多少米?也就是求这个轮子的周长,先求出直径:0.3×2=0.6m,然后求一圈的周长:3.14×0.6=1.884m 最后求出1000圈前进多少米:1.884×1000=1884m。

  已知C求d:花坛的的周长是62.8m。你能求出这个圆形花坛的直径吗?周长6.28÷π3.14=d 2m

  已知C求r:一个圆的周长是25.12㎝,求这个圆的半径,那么先求这个圆的直径:用周长25.12÷π3.14=d 8㎝ 再求半径:8÷2=4㎝。

  这是圆周长的四大典型例题,圆的周长,除以直径是一个固定的数,π是≈3.14的。

  还有一种类型的题目:下图是一个一面靠墙,另一面用竹篱笆围成的半圆形养鸡场,这个半圆的直径为6米,篱笆长多少米?

  这题是求半圆的周长,一面靠墙的就不用算上篱笆,也就是求圆周长的一半,就用直径6m×π3.14=圆的周长 18.84m 再算圆周长的一半:18.84÷2=9.42m。

  这就是有趣的圆的周长,圆周长的一半,让数学与生活紧紧地联系在一起,原来数学也是蕴藏着生活的奥秘!

圆数学日记2

  201X年X月X日 星期X 晴

  我们刚刚学习了圆的认识(一)、(二),知道了圆的许多知识,并且由圆的认识了解到了圆周长的应用,能联系生活实际解决问题,我们去了解一下圆周长的知识!

  刚开始学圆的周长时,知道了能用滚动法和绕线法来量出圆的周长,探究出了圆的周长总是直径3倍多一些,实际上,圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时,通常取3.14。我们就得出一个公式:如果用C表示的周长,那么C=πd或C=2πr也就是圆的周长=圆周率×直径。圆的周长有3个应用:1.已知d求C=πd 2.已知r求C,先求d再求C 3.已知C求d d=C÷π 已知C求r 先求d 再求r。

  已知d求C:一个圆的直径是5.5分米, 求这个圆的周长,那就用π3.14×直径5.5=17.27dm.

  已知r求C:汽车车轮的半径为0.3米,它滚动1圈前进多少米?滚动1000圈前进多少米?它滚动一圈前进多少米?也就是求这个轮子的周长,先求出直径:0.3×2=0.6m,然后求一圈的周长:3.14×0.6=1.884m 最后求出1000圈前进多少米:1.884×1000=1884m。

  已知C求d:花坛的的周长是62.8m。你能求出这个圆形花坛的直径吗?周长6.28÷π3.14=d 2m

  已知C求r:一个圆的周长是25.12㎝,求这个圆的半径,那么先求这个圆的直径:用周长25.12÷π3.14=d 8㎝ 再求半径:8÷2=4㎝。

  这是圆周长的四大典型例题,圆的周长,除以直径是一个固定的数,π是≈3.14的。

  还有一种类型的题目:下图是一个一面靠墙,另一面用竹篱笆围成的半圆形养鸡场,这个半圆的直径为6米,篱笆长多少米?这题是求半圆的周长,一面靠墙的就不用算上篱笆,也就是求圆周长的一半,就用直径6m×π3.14=圆的周长 18.84m 再算圆周长的一半:18.84÷2=9.42m。

  这就是有趣的圆的周长,圆周长的一半,让数学与生活紧紧地联系在一起,原来数学也是蕴藏着生活的奥秘!

圆数学日记3

  201X年X月X日 星期X 晴

  老师就让我们将学具中的圆折一折看看能从中发现什么?我心里奇怪了:圆就是一个圆,有什么好折的呢?原来让我们折圆是为了了解圆的对称啊!

  我们又拿出剪刀将一个圆剪了下来,再平均剪成八份。老师让我们想一想如何球出圆的面积来。同学们有的说用π乘、有的说用半径求……大家七嘴八舌,课堂好不热闹。最后老师让我们把剪好的八份近似于扇形的纸片试着拼成一个别的图形。我拼的是一个近似于平行四边形的图形。

  随后,我们又分别将圆平均分成了16份、32份,再分别将剪好的小扇形拼成一个多边形。这时候我发现,平均分的数量越多,拼成的图形越接近长方形。

  因为:长方形的面积=长×宽

  所以:圆的面积=C/2×r=2πr/2×r=πr2

  经过了图形的分解再组合,我知道了怎么求圆的面积啦!数学好神奇哟~

本文来源:http://www.qingyiyi.cn/article/N7RM.html